Principles of Software Construction:
The Design of the Java Collections API

Josh Bloch Charlie Garrod

Carnegie Mellon University
School of Computer Science

. s .
Institute For

I S SOFTWARE
RESEARCH

17-214 v [ek

RRRRRRRR

Administrivia

* Homework 4b due next Thursday, 10/22
* US General election, Tuesday, 11/3

— Early voting in process in most states

P 2
VOTE

[]
institute |
17-214 2 Sorro
RESEARCH

We take you back now to the 1997

* |t was a simpler time
— Java had only Vector, Hashtable & Enumeration
— But it needed more; platform was growing!
 The barbarians were pounding the gates
— JGL was a transliteration of STL to Java

— It had 130 (!) classes and interfaces
— The JGL designers wanted badly to put it in the JDK

* |t fell to me to design something better

17-214 s [s

RRRRRRRR

Here’s the first collections talk ever

e Debuted at JavaOne 1998
e No one knew what a collections framework was
— Or why they needed one

 Talk aimed to

— Explain the concept
— Sell Java programmers on this framework

— Teach them to use it

SSSSSSSS

17-214 + [Hlak

17-214

The Java™ Platform
Collections Framework

Joshua Bloch
Sr. Staff Engineer, Collections Architect

Sun Microsystems, Inc. g@/
=

What is a Collection?

* Object that groups elements
* Main Uses

— Data storage and retrieval
— Data transmission

* Familiar Examples
— java.util.Vector

— java.util.Hashtable
— array

17-214

What is a Collections Framework?

 Unified Architecture

— Interfaces - implementation-independence
— Implementations - reusable data structures
— Algorithms - reusable functionality

* Best-known examples

— C++ Standard Template Library (STL) :
— Smalltalk collections %@g

17-214 | S A

RRRRRRRR

Benefits

* Reduces programming effort

* Increases program speed and quality
* |Interoperability among unrelated APIs
* Reduces effort to learn new APIs

* Reduces effort to design new APIs

* Fosters software reuse
/

[]
institut
17-214 8 IST SOFTWARE
RRRRRRRR

Design Goals

* Small and simple

* Reasonably powerful

* Easily extensible

 Compatible with preexisting collections
* Must feel familiar

17-214 9

Architecture Overview

* Core Collection Interfaces

* General-Purpose Implementations
* Wrapper Implementations

e Abstract Implementations

e Algorithms

17-214

Core Collection Interfaces

17-214 11 YR s

RRRRRRRR

Collection Interface

public interface Collection {
int size();
boolean isEmpty();
boolean contains(Object element);
boolean add(Object element); // Optional
boolean remove(Object element); // Optional
Iterator iterator();

Object[] toArray();
Object[] toArray(Object al[]);

// Bulk Operations

boolean containsAll(Collection c);

boolean addAll(Collection c); // Optional 4
boolean removeAll(Collection c); // Optional »
boolean retainAll(Collection c); // Optional =

void clear(); // Optional J)XXZP(

institute for
17-214 12

Iterator Interface

* Replacement for Enumeration interface
— Adds remove method
— Improves method names

public interface Iterator {
boolean hasNext();

E next();
void remove(); // Optional /
} %%
=
JAVA

institute for
17-214 13

Collection Example
Reusable algorithm to eliminate nulls

public static boolean removeNulls(Collection c) {
for (Iterator i = c.iterator(); i.hasNext();) {
if (i.next() == null)
i.remove();

[]
institute ror
17-214 14 |BYf sorme

Set Interface

* Adds no methods to Collection!
e Adds stipulation: no duplicate elements
 Mandates equals and hashCode calculation

public interface Set extends Collection {

¥

[]
institute ror
17-214 15 |Yf sorm

Set Idioms

Set sl1, s2;
boolean isSubset = sl.containsAll(s2);

Set union = new HashSet(sl);
union.addAll(s2);

Set intersection = new HashSet(sl);
intersection.retainAll(s2);

Set difference = new HashSet(sl);

difference.removeAll(s2); 1

Collection c; gé%i%»

Collection noDups = new HashSet(c); éigi;s
JAVA

institute for
17-214 16

List Interface
A sequence of objects

public interface List extends Collection {

17-214

Object get(int index);

Object set(int index, Object element);
void add(int index, Object element);
Object remove(int index);

boolean addAll(int index, Collection c);
int indexOf(Object 0);

int lastIndexOf(Object o0);

List sublList(int from, int to);

ListIterator listIterator();
ListIterator listIterator(int index);

// Optional
// Optional
// Optional
// Optional

<
=

JAVA
. . .
institute for
SOFTWARE
17 RESEARCH

List Example
Reusable algorithms to swap and randomize

public static void swap(List a, int i, int j) {
Object tmp = a.get(i);
a.set(i, a.get(j));
a.set(j, tmp);

¥

private static Random r = new Random(); // Obsolete impl!

public static void shuffle(List a) {

for (int i = a.size(); i > 1; i--)
swap(a, 1 - 1, r.nextInt(i)); éﬁ%iép
} =

S

JAVA

institute for
17-214 18

List Idioms

List a, b;

// Concatenate two lists
a.addAll(b);

// Range-remove
a.sublList(from, to).clear();

// Range-extract

List partView = a.subList(from, to);)

List part = new ArraylList(partView);

partView.clear(); —_—
’ e —

JAVA

institute for
17-214 19

Map Interface
A key-value mapping

public interface Map {
int size();
boolean isEmpty();
boolean containsKey(Object key);
boolean containsValue(Object value);
Object get(Object key);
Object put(Object key, Object value); // Optional

Object remove(Object key); // Optional

void putAll(Map t); // Optional

void clear(); // Optional

// Collection Views Y

public Set keySet();

public Collection values(); | =—3

. e —

public Set entrySet(); "

} JAVA

institute for
17-214 20

Map Idioms

// Iterate over all keys in Map m

Map< m;

for (iterator i = m.keySet().iterator(); i.hasNext();)
System.out.println(i.next());

// "Map algebra”

Map a, b;

boolean isSubMap = a.entrySet().containsAll(b.entrySet());

Set commonKeys = new HashSet(a.keySet()).retainAll(b.keyset());

//Remove keys from a that have mappings in b

a.keySet().removeAll(b.keySet()); % /E
=

S

JAVA

institute for
17-214 21

General Purpose Implementations

Consistent Naming and Behavior

Implementations

Hash Resizable | Balanced | Linked
Table Array Tree List

JAVA

institute for
17-214 22

Choosing an Implementation

* Set
— HashSet -- O(1) access, no order guarantee
— TreeSet -- O(log n) access, sorted

* Map /
— HashMap -- (See HashSet) =

—. TreeMap -- (See TreeSet) JAVH
e List
— ArraylList -- O(1) random access, O(n) insert/remove
— LinkedList -- O(n) random access, O(1) insert/remove
* Use for queues and deques (no longer a good idea!)

[]
institute for
17-214 23

Implementation Behavior
Unlike Vector and Hashtable...

* Fail-fast iterator
* Null elements, keys, values permitted

 Not thread-safe

17-214

Synchronization Wrappers
A new approach to thread safety

 Anonymous implementations, one per core interface
 Static factories take collection of appropriate type
 Thread-safety assured if all access through wrapper

* Must manually synchronize iteration

* |t was new then; it’s old now!

— Synch wrappers are largely obsolete

— Made obsolete by concurrent collections %5
=

17-214 S 1 A

RRRRRRRR

Synchronization Wrapper Example

Set s = Collections.synchronizedSet(new HashSet());
s.add("wombat"); // Thread-safe

synchronized(s) {
Iterator 1 = s.iterator(); // In synch block!
while (i.hasNext())

System.out.println(i.next()); 4
} =

JAVA

institute for
17-214 26

Unmodifiable Wrappers

* Analogous to synchronization wrappers
— Anonymous implementations
— Static factory methods
— One for each core interface

* Provide read-only access

17-214 | S 1 A

RRRRRRRR

Convenience Implementations

 Arrays.asList(Object[] a)
— Allows array to be "viewed" as List
— Bridge to Collection-based APIs

* EMPTY_SET, EMPTY_LIST, EMPTY_MAP

— immutable constants
 singleton(Object o)

— immutable set with specified object %@
* nCopies(int n, Object o) =

— immutable list with n copies of object

17-214 S 1 A

RRRRRRRR

Custom Implementation Ideas

* Persistent
* Highly concurrent

* High-performance, special-purpose
* Space-efficient representations
* Fancy data structures

e Convenience classes
7.

17-214 | S LA

RRRRRRRR

Custom Implementation Example
[t’s easy with our abstract implementations

// List adapter for primitive int array
public static List intArrayList(int[] a) {
return new AbstractList() {
public Integer get(int i) {
return new Integer(a[i]);

}

public int size() { return a.length; }

public Object set(int i, Integer e) {
int oldval = a[i];
al[i] = e.intValue();

return new Integer(oldval); /
} »
}s =

S

} JAVA

institute for
17-214 30

Reusable Algorithms

static void sort(List list);

static int binarySearch(List list, Object key);

static Object min(Collection coll);

static Object max(Collection coll);

static void fill(List list, Object e);

static void copy(List dest, List src);

static void reverse(List list);

static void shuffle(List list);
&
=

JAVA

. . .
institute for
I S SOFTWARE
RESEARCH

17-214 3

=t

Algorithm Example 1
Sorting lists of comparable elements

List strings; // Elements type: String
Colléééions.sort(strings); // Alphabetical order
List dates; // Elements type: Date
Colléééions.sort(dates); // Chronological order

// Comparable interface (Infrastructure)
public interface Comparable {

int compareTo(Object o); 4
} =

JAVA

institute for
17-214 32

Comparator Inte rface
Infrastructure

* Specifies order among objects
— Overrides natural order on comparables
— Provides order on non-comparables

public interface Comparator {
public int compare(Object ol, Object 02);

<
—

JAVA

institute for
17-214 33

Algorithm Example 2
Sorting with a comparator

List strings; // Element type: String

Collections.sort(strings, Collections.ReverseOrder());

// Case-independent alphabetical order
static Comparator cia = new Comparator() {
public int compare(String cl1, String c2) {
return cl.tolLowerCase().compareTo(c2.tolLowerCase());

}
¥
/
Collections.sort(strings, cia); -+
e
JAVA

institute for
17-214 34

Compatibility

Old and new collections interoperate freely

* Upward Compatibility
—Vector implements List
—Hashtable implements Map
— Arrays.asList(myArray)

 Backward Compatibility
—myCollection.toArray()

—new Vector(myCollection) é%/,
— new Hashtable(myMap) =

17-214 s

RRRRRRRR

APl Design Guidelines

 Avoid ad hoc collections

— Input parameter type:
* Any collection interface (Collection, Map best)
* Array may sometimes be preferable

— Output value type:
* Any collection interface or class
* Array

* Provide adapters for your legacy collections %@
=

S

JAVA

institute for
17-214 36

Sermon

* Programmers:
— Use new implementations and algorithms
— Write reusable algorithms
— Implement custom collections

* API Designers:
— Take collection interface objects as input %(@
— Furnish collections as output =

JAVA

institute for
17-214 37

For More Information

http://java.sun.com/products/jdk/1.2/docs/

guide/collections/index.html

17-214 38

http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html

Takeaways

* Collections haven’t changed that much since ‘98

* API has grown, but essential character unchanged
— With arguable exception of Java 8 streams (2014)

17-214 30 [Giin

RRRRRRRR

Part 2: Outline

The initial release of the collections API
|. Design of the first release
II. Evolution

V. Code example
V. Critique

[]
institute ror
17-214 a0 |[BY) o

Collection interfaces
first release, 1998

/\
/

SortedSet

17-214 41 | S) SOFTWARE

RRRRRRRR

General-purpose implementations
first release, 1998

Implementations

Hash Resizable | Balanced | Linked
Table Array Tree List

| Set | HashSet I I TreeSet

Interfaces | List ArrayList

[]
institute for
17-214 a2

Other implementations
first release, 1998

* Convenience implementations
— Arrays.asList(Object[] a)
— EMPTY_SET, EMPTY_LIST, EMPTY_MAP
— singleton(Object o)
— nCopies(Object o)

* Decorator implementations

— Unmodifiable{Collection,Set,List,Map,SortedMap}
— Synchronized{Collection,Set,List,Map,SortedMap}

e Special Purpose implementation — WeakHashMap

[]
institute for
17-214 a3

Reusable algorithms
first release, 1998

 static
 static
 static
 static
 static
 static
 static

e static

17-214

void sort(List[]);

int binarySearch(List list, Object key);
object min(List[]);

object max(List[]);

void fill(List list, Object 0);

void copy(List dest, List src);

void reverse(List list);

void shuffle(List list);

[]
institute for
SOFTWARE
44 RESEARCH

Infrastructural interfaces

e Iterator

e ListIterator
* Map.Entry

e Comarable

* Comaprator

[]
institute ror
17-214 as |[SY) o

And that’s all there was to it!

17-214 | S

RRRRRRRR

OK, | told a little white lie:
Array utilities, first release, 1998

« static int binarySearch(type[] a, type key)

 static
 static
 static
 static
 static
 static
 static
 static
17-214

int binarySearch(Object[] a, Object key, Comparator c)

boolean equals(type[] a, type[] a2)

void
void
void
void
void

void

fill(type[] a, type val)

fill(type[] a, int fromIndex, int tolndex, type val)
sort(type[] a)

sort(type[] a, int fromIndex, int toIndex)
sort(Object[] a, Comparator c)

sort(type[] a, int fromIdx, int toIdx, Comparator c)

[]
institute for
SOFTWARE
47 RESEARCH

Documentation matters

Reuse is something that is far easier to say than to
do. Doing it requires both good design and very
good documentation. Even when we see good
design, which is still infrequently, we won't see the
components reused without good documentation.

- D. L. Parnas, Software Aging. Proceedings
of the 16th International Conference on
Software Engineering, 1994

[]
institute for
17-214 a8

Of course you need good JavaDoc
But it is not sufficient for a substantial API

[Java Platform 1.2 AP X\’AEOuﬂme of the Collec: x W - - Joshua | { = | | ‘
€« C | [} www.cs.mun.ca/~michael/java/jdk1.2-docs/apifjava/util/Map.htm @ % 900 =
i Apps [4 Print [Wayback MM Symbols 13 TitanTV [3 SPIl & RealOEM.com .. B Keyboard short... 3 Amazon.com:t.. #® USPS First Class [} www.icarsoftus.. (& http//www.cs.c.. & Timovar / Solve.. [E] Home - Amazo... » [J Other bookmarks

Overview Package [dEEXYUse Tree Deprecated Index Help Java Platform 1.2

PREV CLASS NEXTCLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHCOD
java.util

Interface Map

All Known Subinterfaces:
SortedMap

All Known Implementing Classes:
AbstractMap, HashMap, Hashtable, RenderingHints, WeakHashMap, Attributes

public abstract interface Map
An object that maps keys to values. A map cannot contain duplicate keys; each key can map to at most one value.
This interface takes the place of the Dictionary class, which was a totally abstract class rather than an interface.

The map interface provides three collection views, which allow a map's contents to be viewed as a set of keys, collection of values, or set of key-value mappings. The order of a map is defined as
the order in which the iterators on the map's collection views return their elements. Some map implementations, like the TreeMap class, make specific guarantees as to their order; others, like the
HashMap class, do not.

Note: great care must be exercised if mutable objects are used as map keys. The behavior of a map is not specified if the value of an object 1s changed in a manner that affects equals comparisons
while the object is a key in the map. A special case of this prohibition is that it is not permissible for a map to contain itself as a key. While it 1s permissible for a map to contain itself as a value,
extreme caution is advised: the equals and hashCode methods are no longer well defined on a such a map.

All general-purpose map implementation classes should provide two "standard" constructors: a void (no arguments) constructor which creates an empty map, and a constructor with a single
argument of type Map, which creates a new map with the same key-value mappings as its argument. In effect, the latter constructor allows the user to copy any map, producing an equivalent map
of the desired class. There is no way to enforce this recommendation (as interfaces cannot contain constructors) but all of the general-purpose map implementations in the JDK comply.

Since: =

—— 1] — I I — | il sma T e)

institute for
17-214 a9

A single place to go for documentation

[/ [The Collections Fran X\{E Outline of the Collec x % Joshua | { = | ‘ =0
€ - C [4 www.cs.mun.ca/~michael/java/jdk1.2-docs/guide/collections/ir html @, ¥ O9 00 =
i Apps [4 Print [Wayback MM Symbols 13 TitanTV [3 SPIl & RealOEM.com .. B Keyboard short... 3 Amazon.com:t.. #® USPS First Class [} www.icarsoftus.. (& http//www.cs.c.. & Timovar / Solve.. [E] Home - Amazo... » [J Other bookmarks

1 JDK 1.2 Contents

[-

=7 The Collections Framework

o
The collections framework is a unified architecture for representing and manipulating collections, allowing them to be manipulated independently of the details of their
representation. It reduces programming effort while increasing performance. It allows for interoperability among unrelated APIs, reduces effort in designing and learning new APTs,
and fosters software reuse. The framework is based on six collection interfaces. It includes implementations of these interfaces, and algorithms to manipulate them.
Overview

* Overview - An overview of the Collections framework.
API Specification
* API Reference - An annotated outline of the classes and interfaces comprising the collections framework, with links into the JavaDoc.
API Enhancements
* API Enhancements - An annotated list of API changes between the Beta4 and FCS releases, with links into the JavaDoc.
Design FAQ
* Design FAQ- Answers to frequently asked questions concerning the design of the collections framework.
Tutorial

s Tutorial - A tutorial introduction to the collections framework with plenty of programming examples.

Copyright € 1993-98 Sun Microsystems. Inc. All Rights Reserved.

-Star'f - u e
5 send comments to: collections-conunents(@java.sun.com o
[SR S— 0 F = | _— T = ——

institute for
17-214 50

Overviews provide understanding
A place to go when first learning an API

[y Collections Framew« X\’AEOuﬂme of the Collec: x - foshua | { = | 28 ‘

€« C | [} www.cs.mun.ca/~michael/java/jdk1.2-docs/guide/collections/overview @ 9 O9 00 =
i Apps [4 Print [Wayback MM Symbols 13 TitanTV [3 SPIl & RealOEM.com .. B Keyboard short... 3 Amazon.com:t.. #® USPS First Class [} www.icarsoftus.. (& http//www.cs.c.. & Timovar / Solve.. [E] Home - Amazo... » [J Other bookmarks

7 Collections Framework Overview

Introduction

The 1.2 release of the Java platform includes a new collections framework. A collection 1s an object that represents a group of objects (such as the familiar Vector class). A collections framework
is a unified architecture for representing and manipulating collections, allowing them to be manipulated independently of the details of their representation.

The primary advantages of a collections framework are that it:

* Reduces programming effort by providing useful data structures and algorithms so you don't have to write them yourself.

* Increases performance by providing high-performance implementations of useful data structures and algorithms. Because the various implementations of each interface are
interchangeable, programs can be easily tuned by switching implementations.

s Provides interoperability between unrelated APTs by establishing a common language to pass collections back and forth.

* Reduces the effort required to learn APIs by eliminating the need to learn multiple ad hoc collection APIs.

* Reduces the effort required to design and implement APIs by eliminating the need to produce ad hoc collections APIs.

* Fosters software reuse by providing a standard interface for collections and algorithms to manipulate them.

The collections framework consists of:

* Collection Interfaces - Represent different types of collections, such as sets, lists and maps. These interfaces form the basis of the framework.

* General-purpose Implementations - Primary implementations of the collection interfaces.

* Legacy Implementations - The collection classes from earlier releases, Vector and Hashtable, have been retrofitted to implement the collection interfaces.

* Wrapper Implementations - Add functionality. such as synchronization, to other implementations.

* Convenience Implementations - High-performance "mini-implementations" of the collection interfaces.

* Abstract Implementations - Partial implementations of the collection interfaces to facilitate custom implementations.

» Algorithms - Static methods that perform useful functions on collections, such as sorting a list.

s Infrastructure - Interfaces that provide essential support for the collection interfaces.

* Array Utilities - Utility functions for arrays of primitives and reference objects. Not, strictly speaking, a part of the Collections Framework, this functionality is being added to the Java
platform at the same time and relies on some of the same infrastructure.

— T il | I — | e) 1T S -

institute for
17-214 51

Tutorials teach
Another place to go when learning an API

17-214

™

The Java — Tutorial

u 17-480 (22 unread) wrt of Tutorial > Start of Trail

Search
Feedback Form

Trail: Collections: Table of Contents

Introduction to Collections
Interfaces

The Collection Interface
The Set Interface

The List Interface

The Queue Interface
The Map Interface
Obiject Ordering

The SortedSet Interface
The SortedMap Interface

Implementations

Set Implementations

List Implementations

Map Implementations

Queue Implementations
Wrapper Implementations
Convenience Implementations

Algorithms
Custom Implementations
Interoperability

Compatibility
API Design

Solving Commeon Collections Problems

u Start of Tutorial > Start of Trail

Copyright 1995-2005 Sun Microsystems, Inc. All rights reserved.

Search
Feedback Form

institute for
SOFTWARE
52 RESEARCH

Annotated outlines provide access
| like them, but not everyone does

[3 Annotated Outline o X\’AEOuﬂme of the Collec: x - - - foshua | h 28 ‘
€« C | [4 www.cs.mun.ca/~michael/java/jdk1.2-docs/guide/collections/reference.html @ 9 O9 00 =
i Apps [4 Print [Wayback MM Symbols 13 TitanTV [3 SPIl & RealOEM.com .. B Keyboard short... 3 Amazon.com:t.. #® USPS First Class [} www.icarsoftus.. (& http//www.cs.c.. & Timovar / Solve.. [E] Home - Amazo... » [J Other bookmarks

s

= Annotated Outline of Collections Framework
S
JAVA

The collections framework consists of:

¢ Collection Interfaces - The primary means by which collections are manipulated.
o Collection - A group of objects. No assumptions are made about the order of the collection (if any). or whether it may contain duplicate elements.
o Set - The familiar set abstraction. No duplicate elements permitted. May or may not be ordered. Extends the Collection interface.
o List - Ordered collection, also known as a sequence. Duplicates are generally permitted. Allows positional access. Extends the Collection interface.
o Map - A mapping from keys to values. Each key can map to at most one value.
o SortedSet - A set whose elements are automatically sorted, either in their natural ordering (see the Comparable interface), or by a Comparator object
provided when a sortedSet instance is created. Extends the Set interface.
o SortedMap - A map whose mappings are automatically sorted by key, either in the keys' natural ordering or by a comparator provided when a SortedMap
mstance 1s created. Extends the Map interface.
¢ General-Purpose Implementations - The primary implementations of the collection interfaces.
= HashSet - Hash table implementation of the Set interface. The best all-around implementation of the Set interface.
o TreeSet Red-black tree implementation of the Sortedset interface.
o ArrayList - Resizable-array implementation of the List interface. (Essentially an unsynchronized vector.) The best all-around implementation of the
List interface.
o LinkedList - Doubly-linked list implementation of the List interface. May provide better performance than the ArrayList implementation if elements are
frequently inserted or deleted within the list. Useful for queues and double-ended queues (deques).
o HashMap - Hash table implementation of the Map mterface. (Essentially an unsynchronized Hashtable that supports null keys and values.) The best all-
around implementation of the Map interface.
o TreeMap Red-black tree implementation of the SortedMap interface.
« Wrapper Implementations - Functionality-enhancing implementations for use with other implementations. Accessed soley through static factory methods.
o Collections.unmodifiablelnterface - Return an unmodifiable view of a specified collection that throws an UnsupportedOperationException if the user
attempts to modify it.

—— I | — I B— T e) 1T -

institute for
17-214 53

A design rationale saves you hassle
and provides a testament to history

[Java Collections API [x '\ [S] Outline of the Colle Joshual ‘ = 2< ‘
€« C | [} www.cs.mun.ca/~michael/java/jdk1.2-docs/guide/collections/designfag.htm @, % 900 =
i Apps [4 Print [Wayback MM Symbols 13 TitanTV [3 SPIl & RealOEM.com .. B Keyboard short... 3 Amazon.com:t.. #® USPS First Class [} www.icarsoftus.. (& http//www.cs.c.. & Timovar / Solve.. [E] Home - Amazo... » [J Other bookmarks

% Java Collections API Design FAQ

This document answers frequently asked questions concerning the design of the Java collections framework. It is derived from the large volume of traffic on the collections-comments alias. It
serves as a design rationale for the collections framework.

Core Interfaces - General Questions

1. Why don't vou support immutabilitv directly in the core collection interfaces so that vou can do away with optionai operations (and UnsupportedOperationException)?

3%

. Won't programmers have to surround any code that calls optional operations with a try-catch clause in case they throw an UnsupportedOperationException?

3. Why isn't there a core interface for "bags" (AKA multisets)?

4. Why don't vou provide for "gating functions" that facilitate the implementation of type-safe collections?

wn

. Why didn't vou use ""Beans-style names" for consistency?

Collection Interface

1. Why doesn't Collection extend Cloneable and Serializable?

3]

. Why don't you provide an "apply" method in Collection to apply a given method ("upcall”) to all the elements of the Collection?

3. Why didn't vou provide a "Predicate" interface. and related methods (e.g.. a method to find the first element in the Collection satisfving the predicate)?

4. Why don't you provide a form of the addAll method that takes an Enumeration (or an Iterator)?

5. Why don't the concrete implementations in the JDK have Enumeration (or Iterator) constructors?

= smallta k-best-...Jpg N * Show all downloads... *

institute for
17-214 54

Outline

The initial release of the collections API
|. Design of the first release
II. Evolution

V. Code example
V. Critique

- institute for
17-214 55 [y sormvae

A wonderful source of use cases
“Good artists copy, great artists steal.” — Pablo Picasso

SMALLIALK

BEST PRACTICE
l’A'l"l‘ls RN b

17-214 s B

RRRRRRRR

The first draft of APl was not so nice

« Map was called Table

* No HashMap, only Hashtable

* No algorithms (Collections, Arrays)
* Contained some unbelievable garbage

17-214 s7 [EA vk

RRRRRRRR

Automatic alias detection
A horrible idea that died on the vine

Vit

*

*/

pub

This interface must be implemented by Collections and Tables that are
<i>views</i> on some backing collection. (It is necessary to
implement this interface only if the backing collection is not
<i>encapsulated</i> by this Collection or Table; that is, if the
backing collection might conceivably be be accessed in some way other
than through this Collection or Table.) This allows users

to detect potential <i>aliasing</i> between collections.

<p>

If a user attempts to modify one collection

object while iterating over another, and they are in fact views on
the same backing object, the iteration may behave erratically.
However, these problems can be prevented by recognizing the
situation, and "defensively copying"” the Collection over which
iteration is to take place, prior to the iteration.

lic interface Alias {
YAk
* Returns the identityHashCode of the object "ultimately backing" this
* collection, or zero if the backing object is undefined or unknown.
* The purpose of this method is to allow the programmer to determine
* when the possiblity of <i>aliasing</i> exists between two collections
* (in other words, modifying one collection could affect the other).
This
* is critical if the programmer wants to iterate over one collection and
* modify another; if the two collections are aliases, the effects of
* the iteration are undefined, and it could loop forever. To avoid
* this behavior, the careful programmer must "defensively copy" the
* collection prior to iterating over it whenver the possibility of
* aliasing exists.
* <p>
* If this collection is a view on an Object that does not impelement
* Alias, this method must return the IdentityHashCode of the backing
* Object. For example, a List backed by a user-provided array would
return the IdentityHashCode of the array.

*

17-214

*

If this collection is a <i>view</i> on another Object that implements
Alias, this method must return the backingObjectId of the backing
Object. (To avoid the cost of recursive calls to this method, the
backingObjectId may be cached at creation time).

* <p>

For all collections backed by a particular "external data source" (a
SQL database, for example), this method must return the same value.
The IdentityHashCode of a "proxy" Object created just for this
purpose will do nicely, as will a pseudo-random integer permanently
associated with the external data source.

* <p>

For any collection backed by multiple Objects (a "concatenation
view" of two Lists, for instance), this method must return zero.
Similarly, for any <i>view</i> collection for which it cannot be
determined what Object backs the collection, this method must return
zero. It is always safe for a collection to return zero as its
backingObjectId, but doing so when it is not necessary will lead to
inefficiency.

* <p>

The possibility of aliasing between two collections exists iff

any of the following conditions are true:

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* <1li>The two collections are the same Object.

* Either collection implements Alias and has a

* backingObjectId that is the identityHashCode of

* the other collection.

* Either collection implements Alias and has a

* backingObjectId of zero.

* Both collections implement Alias and they have equal
* backingObjectId's.

* @see java.lang.System#fidentityHashCode
* @since JDK1.2

*/

int backingObjectId();

institute for
SOFTWARE
58 RESEARCH

| received a lot of feedback

* |nitially from a small circle of colleagues
— Some very good advice
— Some not so good

* Then from the public at large: beta releases
— Hundreds of messages

— Many API flaws were fixed in this stage
— | put up with a lot of flaming

17-214 S 1 A

RRRRRRRR

Review from a very senior engineer

API vote notes

Arrays yes But remove binarySearch* and tolist
BasicCollection no I don't expect lots of collection classes
Basiclist no see List below

Collection yes But cut toArray

Comparator no

DoublylLinkedList no (without generics this isn't worth it)
HashSet no

LinkedList no (without generics this isn't worth it)
List no I'd 1like to say yes, but it's just way

bigger than I was expecting
RemovalEnumeration no
Table yes BUT IT NEEDS A DIFFERENT NAME
TreeSet no

I'm generally not keen on the toArray methods because they add complexity

Simiarly, I don't think that the table Entry subclass or the various
views mechanisms carry their weight.

institute for
17-214 60

l1l. Evolution of Java collections

JDK 1.0, 1996 Java Released: Vector, Hashtable, Enumeration
JDK'1.1,1996 (No API changes)

J2SE 1.2, 1998 Collections framework added

J2SE 1.3, 2000 (No API changes)

J2SE 1.4, 2002 LinkedHash{Map,Set}, IdentityHashSet, 6 new algorithms

J2SE 5.0, 2004 Generics, for-each, enums: generified everything, Iterable
Queue, Enum{Set,Map}, concurrent collections

Java 6,2006 Deque, Navigable{Set,Map}, newSetFromMap, asLifoQueue
Java7,2011 No API changes. Improved sorts & defensive hashing

Java 8, 2014 Lambdas (+ streams and internal iterators)

Java9,2017 Immutable collection factories, e.g. List.of (G, A, T, A, C)

[]
institute for
17-214 61

V. Example — How to find anagrams

* Alphabetize the characters in each word
— e.g., cat - act, dog - dgo, mouse - emosu
— Resulting string is called alphagram

 Anagrams share the same alphagram!
— stop - opst, post - opst, tops - opst, opts - opst

* So go through word list making “multimap”
from alphagram to word!

- institute for
17-214 62 |BYY sormae

How to find anagrams in Java (1/2)

public static void main(String[] args) throws IOException {
// Read words from file and put into a simulated multimap
Map<String, List<String>> groups = new HashMap<>();
try (Scanner s = new Scanner(new File(args[0]))) {
while (s.hasNext()) {
String word = s.next();
String alphagram = alphabetize(word);
List<String> group = groups.get(alphagram);
if (group == null)
groups.put(alphagram, group = new ArraylList<>());
group.add(word);

[]
institute for
17-214 63

How to find anagrams in Java (2/2)

// Print all anagram groups above size threshold
int minGroupSize = Integer.parselnt(args[1]);
for (List<String> group : groups.values())
if (group.size() >= minGroupSize)
System.out.println(group.size() +

+ group);

// Returns the alphagram for a string

private static String alphabetize(String s) {
char[] a = s.toCharArray();
Arrays.sort(a);
return new String(a);

institute for
17-214 64

Demo — Anagrams

- institute for
17-214 65 [EYE i

RRRRRRRR

Two slides in Java vs. a chapter in STL
Java’s verbosity is somewhat exaggerated

SIL Tutorial and
Reference Guride,
Second Edition ™ B
o mditees

David R. Musser
Gillmer J. Derge
Atul Saini

s
>
)
O
&
O
£
>
m
w
o=
m
<
-
m~
®)
m
v
2
Q
Z

>
e
Q
~
z
(=
=
Z
()
s
m
=
o
3

[]
institute for
17-214 66

P.S. Here’s how it looks with streams
The entire anagrams program fits easily on a slide

public static void main(String[] args) throws IOException {

Path dictionary = Paths.get(args[0]);
int minGroupSize = Integer.parselnt(args[1]);

try (Stream<String> words = Files.lines(dictionary)) {
words.collect(groupingBy(word -> alphabetize(word)))

.values().stream()
.filter(group -> group.size() >= minGroupSize)
.forEach(g -> System.out.println(g.size() + ": " + g));

[]
institute for
17-214 67

V. Critique
Some things | wish I'd done differently

* Algorithms should return collection, not void or boolean

— Turns ugly multiliners into nice one-liners

private static String alphabetize(String s) {
return new String(Arrays.sort(s.toCharArray()));

}
Sorted{Set,Map} should have had proper navigation

— Navigable{Set,Map}are warts
not have bothered with ListIterator (?)

n N nh N

NOou
NOou
NOou

NOou

C
C
C

C

nave foug
nave foug
nave foug

.-%Etc., Etc., Etc.

nt formap[key], 1ist[]
nt to incorporate arrays

nt to make for-each work on String

Conclusion

* |t takes a lot of work to make something that
appears obvious in retrospect

— Coherent, unified vision, built on a few key concepts
— Willingness to listen to others

— Flexibility to accept change

— Tenacity to resist change

— Good documentation!

* It’s worth the effort!
— A solid foundation can last two+ decades

17-214 | S

RRRRRRRR

